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Dynamical stability of an ion in a linear trap as a solid-state problem of electron localization
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When an ion confined in a linear ion trap interacts with a coherent laser field, the internal degrees of
freedom, related to the electron transitions, couple to the vibrational degree of freedom of the ion. As a result
of this interaction, the quantum dynamics of the vibrational degree of freedom becomes complicated, and in
some ranges of parameters even chaotic. We analyze the vibrational ion dynamics using a formal analogy with
the solid-state problem of electron localization. In particular, we show how the resonant approximation used in
analysis of the ion dynamics, leads to a transition from a two-dimensional~2D! to a one-dimensional problem
~1D! of electron localization. The localization length in the solid-state problem is estimated in cases of weak
and strong interaction between the sites of the 2D cell by using the methods of resonance perturbation theory,
common in analysis of 1D time-dependent dynamical systems. We show that the localization length can be
used as an indicator of the effective temperature of the trapped ion, which can be experimentally measured.

DOI: 10.1103/PhysRevA.64.053406 PACS number~s!: 32.80.Pj, 05.45.Mt, 42.50.Vk
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I. INTRODUCTION

The problem of quantum dynamics for Hamiltonian sy
tems with time-periodic perturbation can be formulated
terms of an equivalent solid-state problem of electron loc
ization on a lattice. Such kinds of connections were d
cussed for different models in@1,2# ~see also reference
therein!. However, most results are obtained for quant
kicked systems, such as a quantum kicked rotor or a quan
kicked oscillator. These systems are convenient for both a
lytical and numerical analysis because instead of differen
equations one can use discrete quantum maps. At the s
time, the existence of periodic kicks suggests that the ex
nal field involves an infinite number of harmonics with equ
amplitudes. In more common physical situations, there
only a few harmonics in the perturbation. In particular, su
a situation occurs when an ion trapped in a linear ion t
interacts with two laser fields with close frequencies@3#. In
this case, the internal degree of freedom of the ion~related to
the electron dynamics! interacts with the vibrational degre
of freedom. This interaction can result in complicated a
even chaotic dynamics of the vibrational degree of freed
of the ion. The analysis of the stability of the ion in th
system can be performed using a model of a quantum
monic oscillator perturbed by a monochromatic wave@3#.

In this paper we show that the problem of stability of t
monochromatically perturbed oscillator can be formulated
terms of localization of an electron in a two-dimension
~2D! solid state system. The resonance approximation, c
mon in treatment of time-periodic systems, is used to red
the effective dimensionality of the solid-state model in t
case of relatively small interaction of the ion with the las
field. In order to compare two completely different system
a similarity in the formal description of the time-period
system and a space-periodic solid state is exploited; nam
in the time-dependent system we use the time-periodicity
the perturbation and employ a Floquet formalism, while
1050-2947/2001/64~5!/053406~7!/$20.00 64 0534
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the solid-state system we exploit the space periodicity
use the Bloch theorem.

The paper is organized as follows. In Sec. II we descr
the model used for description of an ion trapped in a lin
ion trap and interacting with two laser fields with close fr
quencies. In Sec. III, we discuss the general procedure
allows us to treat a 1D time-periodic system on the sa
basis as a 2D solid-state model. In the case of a small
turbation, the resonance approximation is used in Sec. IV
decrease the effective dimensionality of the solid-state s
tem from two to one. The localization length in the soli
state model is estimated in Sec. V by calculating the size
the chaotic region in the corresponding time-periodic syste
in the situation when the interaction between the sites of
solid state is strong. In Sec. VI we discuss a connection
the localization properties of our system with the effecti
temperature of an ion which can be measured experim
tally. Concluding remarks are given in Sec. VIII.

II. THE VIBRATIONAL HAMILTONIAN

In the following @3#, we assume that two laser beam
designated the pump~p! and the Stokes (s), with slightly
different frequenciesvp and vs , respectively, interact with
an ion trapped in a linear ion trap. Both beams are assu
to be plane polarized in thez direction with the amplitudes o
the electric fieldE z

(p) andE z
(s) , and the wave vectorskp and

ks . The Hamiltonian, including the effect of the harmon
evolution of the ion along the weak axis of the trap~but
excluding the internal free evolution!, is

Ĥ5
p̂2

2M
1

Mv2x̂2

2
1

«

k
cos~kx̂2Vt !, ~1!

where p̂ and x̂ are thex-components of the momentum an
the coordinate of the ion,t is the time,M is the mass of the
ion, v is the frequency of the ion vibrations in the linear tra
«52xkuE z

(p)E z
(s)* u, V5vp2vs , k5(kp2ks)•ex , ex is a
©2001 The American Physical Society06-1
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unit vector in thex direction, andx5Ape0/4n3D (n andA
being, respectively, the wavenumber and the EinsteinA co-
efficient for the transition between the upper and lower ma
folds, D the laser detuning, ande0 the permitivity of free
space!.

In the dimensionless form the Hamiltonian~1! reads

Ĥ5
Ĥ

~Mv2/k2!
52

h2

2

]2

]X2 1
X2

2
1e cos~X2mt!

5Ĥ01V~X,t!, ~2!

whereĤ0 is the Hamiltonian of a linear oscillator,

X5kx, t5vt, e5
«k

Mv2 , h5
\k2

Mv
,

m5
V

v
5N1d. ~3!

Hereh is a dimensionless Planck constant,N is the~positive
integer! resonance number, andd is the detuning from the
resonance.

The classical analog of the Hamiltonian~2! is

H5
X2

2
1

P2

2
1e cos~X2mt!, ~4!

where P5kp/Mv is the dimensionless momentum. In th
action-angle variables (I ,q), the classical Hamiltonian~4!
takes the form

H5I 1e cos@kr~ I !sinq2mt#, ~5!

where X5kr(I )sinq, P5kr(I )cosq, kr5AX21P25A2I
is the dimensionless amplitude of oscillations,I is the dimen-
sionless action measured in units ofI 05Mv/k2, andq is the
phase of oscillations.

III. CONNECTION WITH A 2D SOLID-STATE
LOCALIZATION PROBLEM

We write the solution to the Schro¨dinger equation

ih
]C~X,t!

]t
5ĤC~X,t! ~6!

in the form of a series over the eigenfunctionsun&[fn(X) of
the harmonic oscillator HamiltonianĤ0,

C~X,t!5 (
n50

`

cn~t!un&. ~7!

Then we obtain the equations for the complex amplitu
cn(t),
05340
i-

s

ih
dcm~t!

dt
5h~m11/2!cm~t!

1e (
n52m

`

^mucos~X2mt!um1n&cm1n~t!

~8!

5h~m11/2!cm~t!1
e

2 (
n52m

`

~e2 imtFm,m1n

1eimtFm,m1n* !cm1n~t!.

In Eq. ~8!, Fm,m1n is the matrix element@4#,

Fm,m1n5^mueiXum1n&

5
i nhn/2e2h/4

2n/2A~m11!~m12!•••~m1n!
Lm

n S h

2D , ~9!

whereLm
n is the Laguerre polynomial. Whenm@1, the La-

guerre polynomials can be expressed in terms of the Be
functionsJn @4# as

Lm
n S h

2D5S 2m

h D n/2

Jn~A2mh!, ~10!

where the argument of the Bessel function,A2mh5krm , is
the quantized dimensionless amplitude of oscillations of
harmonic oscillator. Using Eqs.~9! and ~10! the matrix ele-
ments can be written in the form

Fm,m1n5
i nmn/2e2h/4

A~m11!•••~m1n!
Jn~A2mh!. ~11!

Since the Hamiltonian~2! is periodic in time the solution
of the Schro¨dinger equation~8! can be written as

cm
q ~t!5e2 isqt/hAm

q ~t!, ~12!

where sq is a quasienergy, measured in units ofMv2/k2,
cm

q (t) is the quasienergy~QE! function, andAm
q (t) is a pe-

riodic function with the periodT52p/m,

Am
q ~t12p/m!5Am

q ~t!. ~13!

The quasienergy functions are the eigenfunctions of the e
lution operatorÛ for one periodT of the external field,

Û~T!cm
q ~t!5e2 isqT/hcm

q ~t!. ~14!

The evolution operator for one period of the external fie
Û(T) is

Û~T!5T̂e2 i *0
TĤ(t)dt, ~15!
6-2
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DYNAMICAL STABILITY OF AN ION IN A LINEA R . . . PHYSICAL REVIEW A 64 053406
whereT̂ is the ordering operator, andĤ(t) in our problem is
given by Eq.~2!. In our numerical calculations, presente
below, we consider only the QE states at the timet50, so
that cm

q (0)5Am
q (0)[Am

q .1

Substitution of Eq.~12! in Eq. ~8! gives the equation for
Am

q :

sqAm
q ~w!52 ihm

dAm
q ~w!

dw
1h~m11/2!Am

q ~w!

1
e

2 (
n52m

`

~e2 iwFm,m1n

1eiwFm,m1n* !Am1n
q ~w!, w[mt. ~16!

Expanding the functionAm
q (w) in a Fourier series,

Am
q ~w!5 (

l 52`

`

Am,l
q e2 i l w, ~17!

we derive the following equation for the amplitudesAm,l
q :

EqAm,l
q 5h~m2m l !Am,l

q 1
e

2 (
n52m

`

~Fm,m1nAm1n,l 11
q

1Fm,m1n* Am1n,l 21
q !, ~18!

whereEq5sq2h/2.
Equation~18! can be interpreted as a problem of electr

localization on a 2D lattice. Indeed, one can consider
complex coefficientsAm,l

q as the complex amplitudes of th
probability of finding an electron on a 2D lattice at the s
(m,l ), where 0<m,`, 2`, l ,`. Some possible transi
tions in the system~18! are shown in Fig. 1~a!. The particle,
initially located at the site with indices (m0 ,l 0), can jump to
the sites (m06n,l 061), wheren is an integer number.

1If the spectrumsq and QE functionsAm
q are known, one can

trace the evolution of the quantum system at the timests5sT,
wheres50,1,2 . . . ~see, for example@5#!.

FIG. 1. ~a! Some possible transitions on a 2D lattice given
Eq. ~18!. ~b! Possible transitions on a 2D lattice at smalle, given by
Eq. ~24!; N52.
05340
e

IV. THE RESONANCE APPROXIMATION

When the interaction amplitude is small,e!1, the 2D
solid state model described by Eq.~18! can be reduced to a
1D system, i.e., it can be described by an equation with o
one index. We divide both parts of Eq.~18! by m and, taking
into account thatd!N and 1/m'1/N2d/N2, we obtain

Eq

m
Am,l

q 5hS m

N
2

dm

N2 2 l DAm,l
q

1
e

2m (
n52m

`

~Fm,m1nAm1n,l 11
q

1Fm,m1n* Am1n,l 21
q !. ~19!

We assume thatd is small, so thatdm/N2!1 for all con-
sidered values ofm, or d50. Then, in the zeroth order ap
proximation we have from Eq.~19!,

S m

N
2 l DAm,l

q 5
Eq

(0)

mh
Am,l

q . ~20!

It follows from Eq. ~20! that if Am,l
q Þ0 then Eq

(0)/mh
5(m/N)2 l . Since the ratioEq

(0)/mh is defined by modulus
1 @see Eq.~14!#, we can write,Eq

(0)/mh50.2 Then Eq.~20!
takes the form

~m2Nl !Am,l
q 50. ~21!

Hence,

Am,l
q 50 for mÞNl, ~22!

Am,l
q [Am

q for m5Nl. ~23!

The next order approximation form5Nl yields

~Eq2hdm/N!Am
q 5

e

2
~Fm,m1NAm1N

q 1Fm,m2N* Am2N
q !,

~24!

where Eq5Eq
(1) ~we do not consider the higher order a

proximations!. As one can see from Eq.~21!, in them direc-
tion only hops of distanceN are allowed. Thus, the 2D prob
lem, given by Eq.~18!, is reduced in the casee!1 to the 1D
problem described by Eq.~24!.

The localization properties of the quantum states in
resonance approximation, given by Eq.~24!, are defined by
the structure of the matrix elementsFm,m1N . If the matrix
elements are periodic functions ofm, all the eigenstates ar
extended and the spectrum is continuous. This situatio
common for solid-state systems@6#. In the system under con
sideration, the matrix elements~11! are nonperiodic. For this

2We assume that (m/N)2 l is an integer for some initial statem0.
If not, one may introduce the quasienergyEq85Eq2mh$m0 /N% and
a new indexm85m2$m0 /N%N, and solve Eqs.~19! and ~20! for
Eq8 andm8 instead ofEq andm. Here$x% is the fractional part ofx.
6-3
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reason, as will be shown below~see also Refs.@5,7#!, the
quantum states are localized and the spectrum is discre

The matrix elements given by Eq.~11! oscillate as a func-
tion of m. At the pointsm0 where the matrix elements ar
close to zero,

Fm0 ,m01N;JN~A2m0h!'0, ~25!

the transition probability is very small. As a consequen
such points becomes the dynamical barriers to the proba
ity flow @7#, and divide the Hilbert space, labeled by t
index m, into relatively independent parts—resonance ce
@8#. Most of the eigenstates given by Eq.~24! are concen-
trated inside these cells. The localization lengthl i for the
states in thei th cell does not exceed the size of the cell. T
cell boundaries are defined by Eq.~25!, i.e., l i<mi 11

2mi , wheremi and mi 11 satisfy Eq.~25!, so thatA2mih
andA2mi 11h are, respectively, thei th and (i 11)th roots of
the Bessel function in Eq.~25!.

Some characteristic QE functions given by Eq.~24! are
illustrated in Figs. 2~b!–2~e! for small e. The boundaries of
the resonance cells are marked by arrows. One can see
Figs. 2~b!–2~e! that the eigenfunctions are localized insi
the cells, but, on the other hand, each eigenfunction is d
calized overm inside a single cell. For example, for th
initial states in Fig. 1~b! with m572 the transitions will oc-
cur in the region 66,m,176 @inside the first cell in Fig.
2~a!#. Note that for small values ofe and whend50 the
localization properties of our system are independent oe.
This means that an arbitrarily small perturbatione initiates
transitions between the sites on the effective rectangular
tice. For small values ofe, these transitions take place on th
1D sublattices shown in Fig. 1~b!.

Except for the localized~in the resonance cells! eigen-
functions there exist a few eigenfunctions that are delo
ized over several resonant cells. One of these represent

FIG. 2. ~a! The matrix elements~in arbitrary units!, and~b!–~e!
some characteristic QE functions, given by Eq.~24! with h50.2,
e50.02, d50, N52. Only even values ofm are included.
05340
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eigenfunctions is shown in Fig. 3. The QE functions deloc
ized over several resonant cells have maxima in the reg
near the boundaries of the cells marked in Fig. 3 by arro
Thus, if the initial state is located near the boundary o
resonance cell, say, atm566 in Figs. 2 and 3~in the region
near the first arrow!, then this state will propagate for a larg
distance inm, over the 1D sublattice. This distance can
much larger than the size of the single resonance cell@5#.

The structure of the QE states can be better unders
from the plot of the means of the QE functions,mq

5(muAm
q u2m, versus their variancesDq5@(muAm

q u2(m
2mq)2#1/2, presented in Fig. 4~a!. Each eigenfunctionAm

q is
represented by one point in the figure. One can see that m
of the eigenfunctions are localized inside the resonance c
since their means are located inside the cells and their v
ances do not exceed the size of the cell. Each row in
figure is formed by the eigenfunctions of one cell. If th

FIG. 3. The characteristic QE functions delocalized over sev
resonance cells~at even m); q5323, N52, h50.2, e50.02,
d50.

FIG. 4. The plot ofmq versusDq for N52, h50.2, e50.02,
and ~a! d50, ~b! d50.001. The boundaries of the resonance ce
are marked by the arrows on themq axis.
6-4
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DYNAMICAL STABILITY OF AN ION IN A LINEA R . . . PHYSICAL REVIEW A 64 053406
initial state is located inside the resonance cell, the eig
functions of this particular cell define the quantum dynami
These states make the quantum dynamics localized insid
cell and, at the same time, delocalized over the statem
inside the cell@7#. In the corresponding solid-state mod
~24!, the localization length for the states, ini th cell at small
e can be identified with the size of this resonance c
namely, l i5mi 112mi , where A2mih and A2mi 11h are
two successive roots of the Bessel function~25!.

The QE functions delocalized over several resonant c
are represented in Fig. 4~a! by the scattered points with larg
variances. One such function, marked in Fig. 4~a! by an ar-
row, is shown in Fig. 3. The QE functions delocalized ov
several resonant cells cannot be attributed to a definite r
nance cell since their variances are larger than the siz
single cells. As a consequence, these functions cause
calization of the states initially concentrated near the bou
aries of the cells. However, as shown in Ref.@7#, the local-
ization length remains finite, because the matrix eleme
~11! are nonperiodic and their amplitudes decrease with
creasingm ~asm21/4 at m@1).

In the case when the detuning from the resonance@see Eq.
~3!# is not equal to zero (dÞ0), the character of the local
ization depends on the position of the initial statem0 @see
Fig. 4~b!#. In the regionm0@mmax5eN/hd all the states
remain exponentially localized inm, since in this case Eq
~24! has the solution

Eq5~hdm/N!dm,q , Am
q 5dm,q . ~26!

If m0!mmax the above discussed effect of localization ov
the resonance cells takes place. In the intermediate c
when m0>mmax, the character of the localization depen
on the position of the statem0 inside the resonance cell.@For
the parameters in Fig. 4~b! mmax5200.# If m0 is located near
the boundary of the resonance cell where the condition~25!
is satisfied, Eq.~24! has the localized solution~26!. Most
delocalized functions have their meanmq at the center of a
resonance cell.

As follows from Fig. 4~b!, in the regionm0>mmax the
QE functions delocalized over several resonant cells are
sent, since the variance of each function is much less than
size of the cell, whose boundaries are marked in Fig. 4~b! by
arrows. Moreover, the variances of the eigenstates in
near-resonance case in Fig. 4~b! are substantially smalle
than the variances in the exact resonance case shown in
4~a!. Hence, at smalle, an increase of the value of the d
tuningd always leads to localization of the quantum states
the model discussed.

Most of the localization properties of the eigenfunction
given by Eq.~24!, are the quantum manifestation of the cla
sical behavior in phase space. The classical phase spa
the variables„kr(I ), u)…, whereu5Nq, mod 2p, generated
by the exact classical Hamiltonian~5!, is shown in Fig. 5~a!
for the exact resonance case (d50) and in Fig. 5~b! for the
near-resonance case (d50.001).

As one can see from Fig. 5~a!, in the cased50 the clas-
sical phase space is divided into resonance cells.@Figure 5~a!
shows only the first seven cells.# The boundaries of the cells
05340
n-
.

the

l;

ls

r
o-
of
lo-
-

ts
-

r
se,

b-
he

e

ig.

n

,
-

in

kr(I i)5A2I i , are marked in Figs. 5~a! and 5~b! by arrows.
As shown in Refs.@8,9#, in the quasiclassical limit thei th
boundary of the classical cellkri in Figs. 5~a! and 5~b! cor-
responds to thei th boundary of the quantum cellmi on the
mq axis in Figs. 4~a! and 4~b!, so thatkri5A2I i5A2hmi .

Each row of points in Fig. 4~a! is formed by the eigen-
states responsible for the dynamics in the correspond
quantum cell. From comparison with the classical dynam
in phase space we can now describe the localization pro
ties of the quantum states discussed above. Each valuem
in the quantum system corresponds to a quantized clas
actionI m5mh, or to the quantized dimensionless oscillatio
amplitudekrm5A2mh. Each value of actionI m ~or krm)
corresponds to a set of classical trajectories. Moving alo
some classical trajectory the particle with some initial va
of action I m can accept other values in the intervalI m1

,I m

,I m2
. The corresponding eigenstate will be delocalized o

the unperturbed states with numbersm in the intervalm1

,m,m2. From the form of the trajectories in Fig. 5~a! one
can see that in the case of exact resonance all quantum s
of the single quantum cell should be delocalized over
resonance cell, since in the phase space both the extr
valuesI m1

andI m2
that limit the resonance cell can belong

the same trajectory.
Similar arguments can be used to analyze the quant

classical correspondence in the near-resonance case. A
lows from Fig. 5~b!, at dÞ0 in the phase space there is on
a finite number of resonance cells@two cells in Fig. 5~b!#.
Thus, there is a finite number of quantum resonance cell
the Hilbert space in Fig. 4~b! ~the first two cells!. In the
off-resonant region@third to seventh cells in Fig. 4~b!# the
degree of delocalization of eigenstates depends on the p
tion of the state in the cell destroyed by the finite detuningd.
In Fig. 5~b! the least curved trajectories are located near
separatrices, while the the most curved trajectories are
cated near the centers of the destroyed cells. As a co
quence, in the quantum model the eigenfunctions in Fig. 5~b!
have their smallest variance in the region near the sep
trices and their largest variance near the centers of the
stroyed cells.

FIG. 5. The classical phase space for~a! d50, ~b! d50.001;
N52, e50.02. The boundaries of the resonance cells are mar
by arrows.
6-5
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V. THE LOCALIZATION LENGTH IN THE CASE OF
STRONG INTERACTION

In the previous sections we considered the dynamics o
at small perturbation amplitudee!1. At large values ofe
dynamical chaos appears in the classical@10# and quantum
@5,11# monochromatically perturbed oscillators. As will b
shown below, all quantum states in the chaotic area are
localized over the whole chaotic region. The chaotic dyna
ics in the monochromatically perturbed oscillator cor
sponds to hops in different directions in the solid-st
system, as shown in Fig. 1~a!. By estimating the size of the
chaotic motion in the monochromatically perturbed oscilla
we will estimate below the localization length in the corr
sponding solid-state model.

In Fig. 6 the classical phase space is shown fore53. One
can see that in the first two cells the motion is mainly chao
while in the other cells the motion remains mainly regul
The time-averaged quantum probability distributi
uCm(t)u2 is illustrated in Fig. 7~a! for the case of smalle and
in Fig. 7~b! for the casee53. The initial state was taken in
the form cm(0)5dm,m0

with m0530 @in the center of the
first cell in Figs. 7~a! and 7~b!#. As follows from Fig. 7~a!,
the quantum particle can tunnel~see also Ref.@7#! from the
initial ~first! cell to other resonance cells, unlike the classi
case, where essentially all the trajectories in the phase s
are confined inside the resonant cells@see Fig. 5~a!#.

Whene increases, the probability distribution in Fig. 7~b!
increases in most of the quantum cells, which correspond
chaotization of motion in the classical phase space. In
8~a! we show the plotmq(sq) for the casee53, and in Fig.
8~b! the characteristic QE function located in the chaotic a
is illustrated. As one can see from Fig. 8~a!, almost all QE
states in the area of the first two cells are delocalized o
both the cells. In other words, the QE states are locali

FIG. 6. The classical phase space in the casee53. Other pa-
rameters ared50, N52. The boundaries of the resonance cells
marked by arrows.
05340
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inside the chaotic area~first two cells!, but not inside the
single cells, as in the case of smalle in Fig. 4~a!. In the
chaotic regime, one can find a quantum particle with eq
probability in any unperturbed statem inside the chaotic sea
independently of the position and form of the initial sta
located in this region@see the first two cells in Figs. 7~b!,
8~a!, and 8~b!#. Whene increases, more classical and qua
tum cells become chaotic. This results in increasing the a
of delocalization of the quantum chaotic states. Thus, in
regime of chaos the localization length in the solid-state s
tem may be identified with the size of the chaotic area in
monochromatically perturbed oscillator. For example, for
parameters in Figs. 6, 8~a!, and 8~b! the localization length
for the states in the chaotic region isl5m2, whereA2m2h
is the second root of the Bessel function in Eq.~25!. @The
valuem2 is marked by the second arrow in each of Figs.
8~a!, and 8~b!.#

It is necessary to note that, as was shown in@11#, the
quantum and classical dynamics in the chaotic regime
essentially independent of the detuningd whene@d. So the

e

FIG. 7. The time-averaged probability distribution.~a! e50.02;
the averaging has been performed over 100 realizations in the
interval t550002105 000 ~only the probability at evenm is
shown!. ~b! e53, where the averaging has been performed o
100 realizations in the time intervalt5500210500. Other param-
eters areh50.2, d50, N52. The boundaries of the resonanc
cells are marked by arrows.

FIG. 8. ~a! The plot ofmq versussq and ~b! the characteristic
QE eigenfunction located in the chaotic region fore53 and h
50.2, d50, N52. The boundaries of the resonance cells a
marked by arrows.
6-6
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results concerning the chaotic dynamics valid in the ne
resonance case also remain whendÞ0.

VI. EXPERIMENTAL APPLICATIONS

The localization properties of the monochromatically p
turbed oscillator, discussed in this paper, allow us to desc
the stability of an ion trapped in a linear ion trap. The ion c
be cooled down to the ground state of the trapping poten
by the standard Doppler cooling and by the optical pump
method. The external laser fields, which influence the e
tron transitions, result in perturbation of the vibrational d
namics of the ion. This leads to heating of the ion in the tr
As shown below, the effective temperature of the ion is
fined by the value of the localization length.

Let us represent the probability distribution of the ion
the form Pn(T)5uCnu25exp(2\vn/T), whereT is the tem-
perature measured in energy units and the indexn labels the
energy level of the unperturbed ion. In dimensionless u
the probability can be rewritten asPn(Q)5exp(2hn/Q),
where the dimensionless temperatureQ5T/(Mv2/k2) is
measured in the same units as the dimensionless wave
plitudee. On the other hand, one can express the probab
distribution Pn through the localization lengthl as Pn(l)
5exp(2n/l). For example, for ionized calcium withM
56.64310223 g, v52p3500 kHz, and k51.58
3105 cm21, the localization lengthl520 corresponds to
the dimensionless temperatureQ5hl52.4, or to the tem-
perature 4.631024 K. Increasing the wave amplitudee re-
sults in growth of the size of the chaotic region and in
creasing the localization lengthl. As a consequence, th
temperature of the system increases.

VII. CONCLUSION

The regular and chaotic classical and quantum dynam
regimes are analyzed in the system of an ion trapped
.H

,

a,

05340
r-

-
e

n
al
g
c-
-
.
-

ts

m-
ty

-

al
a

linear ion trap and interacting with two laser fields with clo
frequencies. This system is modeled using a quantum o
lator perturbed by a monochromatic wave. Since the sp
trum of the harmonic oscillator is linear, the two-dimension
lattice in the Hilbert space for the monochromatically pe
turbed oscillator is uniform, which allows formulatation o
the problem of dynamical stability in this system in terms
the problem of electron localization in a 2D solid-state s
tem. The resonance approximation is used to decrease
effective dimensionality of the corresponding solid-state s
tem. This can be done in the case of a relatively small in
action between the trapped ion and the laser fields. In
solid-state model this case corresponds to weak interac
between the sites of the 2D lattice. Increasing the interac
amplitude results in delocalization of the quantum states o
the sites of the 2D cell. The area of delocalization in t
solid-state system for strong interaction in the chaotic a
may be identified with the size of the chaotic sea in t
monochromatically perturbed oscillator. Our results prov
understanding of the mechanism of stability of an i
trapped in a linear ion trap. They also allow one to estim
the characteristic dynamical regimes of the trapped ion
to choose parameters required for dynamical stability.
show that the value of the localization lengthl characterizes
an experimentally measurable parameter—the temperatu
the ion.
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